Reactivity of the Pyrido[1,2-a]pyrimidin-4-one Ring System

By Gábor Náray-Szabó,* István Hermecz, and Zoltán Mészáros, CHINOIN Pharmaceutical and Chemical Works, Budapest, Hungary

Abstract

The reactivity of the pharmacologically active pyrido[1.2-a]pyrimidin-4-one ring system has been investigated, and its ring opening, catalytic hydrogenation, reduction by sodium borohydride, N-alkylation, and bromination are described. The hydrolysis. ammonolysis, and reaction with hydrazine of a 3 -ethoxycarbonyl group are also discussed. The reactivity is compared with the charge distribution of the molecules calculated by quantum chemical methods.

Recently the synthesis of 3-ethoxycarbonyl-6-methyl-pyrido[1,2-a]pyrimidin-4-one (2b) was reported, ${ }^{1}$ and this compound and several derivatives proved to be analgetically active. ${ }^{2}$ We have investigated the reactivity of this ring system, and some of the reactions are summarized in Scheme 1. The reactivity was

Scheme 1 Reagents: (i) $\mathrm{I}^{\prime} \mathrm{OCl}_{3}-$ polyphosphoric acid; $\mathrm{R}^{1}=\mathrm{Et}$; (i') $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}$; $\mathrm{R}^{1}=\mathrm{H}$; (ii) $\mathrm{I}^{3} d-\mathrm{C} / \mathrm{H}_{2}$; (iii) (v) $\mathrm{NaBH}_{4}+\mathrm{H}_{2} \mathrm{O}$; (iv), (vi) $\mathrm{Me}_{2} \mathrm{SO}_{4}$
50°
correlated with the quantum mechanically calculated electron densities of the ring system. This method has been applied, with other compounds, by several authors. ${ }^{3-6}$ It should be noted that inductive and mesomeric but not steric and solvent effects can be treated this way. The following reactions are discussed in detail.

Ring Opening.-Stirring the hydrochloride of com-

[^0]vath, and 1. Hermecz, Arzncim.-Forsch., 1972, 22, 815.
${ }^{2}$ J. Knoll, Z. Mészáros, P. Szentmiklósi, and S. Fürst, Arzncim.-Forsch., 1971, $21,717$.
${ }^{3}$ A. Streitwieser, Molecular Orbital Theory for Organic Chemists,' John Wiley, New York, 1961.
${ }_{5}^{4}$ J. O. Morley, J.C.S. Perkin II, 1972, 1223.
${ }^{5}$ S. Fliszár, J. Amer. Chem. Soc., 1972, 94, 1068.
pound (2a) at room temperature for one week leads to cleavage of the $\mathrm{C}(4)-\mathrm{N}(5)$ bond, ${ }^{1}$ to yield ($\mathrm{la} ; \mathrm{R}^{1}=\mathrm{H}$) (20%) (see Scheme 1). In the case of (2b), under the same conditions, $\mathbf{7 6} \%$ conversion is reached after one day. When a 3 -methyl or 3 -phenyl group is present ($7 \mathrm{a}-\mathrm{d}$) no ring opening occurs. The instability of compounds

(8)
a; $R^{\prime}=H, R^{2}=M e$
b; $R^{1}=H, R^{2}=P h$
c ; $R^{\prime}=M e, R^{2}=M e$
d; $R^{\prime}=M e R^{2}=P h$
d; $R^{1}=M e, R^{2}=P h$
e; $R^{\prime}=\mathrm{Me}, R^{2}=\mathrm{CONH}_{2}$
f; $R^{\prime}=\mathrm{Me}, R^{2}=\mathrm{CO}_{2} \mathrm{H}$
g; $R^{1}=M e, R^{2}=H$
h; $R^{\prime}=H, R^{2}=\mathrm{CONH}_{2}$
$(2 a-b)$ is a consequence of the strain in the $\mathrm{C}(4)-\mathrm{N}(5)$ bond. According to X-ray investigations ${ }^{7}$ the $\mathrm{C}-\mathrm{N}$ bond length in (2 b) is $1.473 \AA$, corresponding to an aliphatic bond ${ }^{8}$ ($1.472 \pm 0.005 \AA$). In the compounds (3), obtained through partial saturation, the bond length becomes $1.411 \AA,^{9}$ indicating a stronger bond: no ring opening was observed with these compounds.

Catalytic Hydrogenation.-Reaction occurs over Pd-C or Raney nickel catalysts. Using the latter, (2a) yields (4a) directly with uptake of 3 moles of $\mathrm{H}_{2}{ }^{1}$ In the case of (2b), only 2 moles of H_{2} are absorbed to yield (3b), ${ }^{1}$ and compounds ($7 \mathrm{a}-\mathrm{d}$) behave similarly to give ($8 \mathrm{a}-\mathrm{d}$).

Reduction with Sodium Borohydride.-Addition of NaBH_{4} in an aqueous solution at $35-40{ }^{\circ} \mathrm{C}$ leads to saturation of the $\mathrm{N}(1)-\mathrm{C}(9 \mathrm{a})$ bond in compounds (3) and ($8 \mathrm{e}-\mathrm{g}$) [see Scheme 1, (iii)]. ${ }^{1}$ No reaction occurs in the case of compounds ($8 \mathrm{a}-\mathrm{d}$).

Reduction by borohydride starts with nucleophilic attack by the $\mathrm{BH}_{4}{ }^{-}$ion: ${ }^{10}$ the most reactive atoms of the ring are: $\mathrm{C}-4(0 \cdot 400-0 \cdot 418), \mathrm{C}-9 \mathrm{a}(0 \cdot 245-0 \cdot 292)$, and C-2 $(0.095-0 \cdot 104)$, where the numbers in parentheses are the greatest and smallest values of the charges (in electrons) in the different molecules. Saturation of
${ }^{6}$ H. Sterk and W. Hoppels, Z. Naturforsch., 1972, 27 a, 319.
${ }^{7}$ K. Sasvári, J. Csonka-Horvai, and K. Simon, Acta Cryst., 1972, B28, 2405.
${ }^{8}$ L. E. Sutton, Tables of Interatomic Distances, Chem. Soc. Special Publ., 1958.
${ }^{9}$ K. Sasvári and K. Simon, Acta Cryst., 1973, B29, 1245.
10 J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure,' McGraw-Hill, New York, 1968.
the 4-oxo-group does not occur as this group is part of a cyclic amide. Reaction occurs at position 9a which

(9)

$$
\begin{array}{ll}
a ; R^{1}=H, & R^{2}=C_{2} E t \quad e ; R^{\prime}=M e, R^{2}=P h \\
b ; R^{\prime}=H, & R^{2}=C O_{2} H_{2} \quad f ; R^{\prime}=M e, R^{2}=M e \\
c ; R^{\prime}=M e, R^{2}=C O_{2} E t \quad g ; R^{\prime}=M e, R^{2}=H \\
d ; R^{\prime}=M e, R^{2}=C O N H_{2} \quad h ; R^{\prime}=M e, R^{2}=C O_{2} H
\end{array}
$$

also has a considerable positive charge. Saturating the $\mathrm{N}(1)-\mathrm{C}(9 \mathrm{a})$ double bond causes $\mathrm{C}-2$ to become more positive ; in compounds (10) its charge is $0 \cdot 180$. Boro-

(10)

$$
\begin{aligned}
& a ; R^{\prime}=E t, R^{2}=C O_{2} E t \text { e; } R^{\prime}=M e, R^{2}=C O N H_{2} \\
& b ; R^{\prime}=P r^{n}, R^{2}=C O_{2} E t \quad f ; R^{\prime}=P^{n}, R^{2}=C O_{2} H \\
& c ; R^{\prime}=B u^{n}, R^{2}=C O_{2} E t \quad g ; R^{\prime}=B u^{n}, R^{2}=C O_{2} H \\
& d ; R^{\prime}=M e, R^{2}=P h
\end{aligned}
$$

hydration then occurs at the $C(2)-C(3)$ bond [Scheme 1 , (vii)]. ${ }^{1}$ In the case of compounds ($3 \mathrm{a}-\mathrm{c}$), ($8 \mathrm{a}-\mathrm{e}, \mathrm{g}$),

Formation of Quaternary Ammonium Salts [Scheme 1, (iv) and (vi)].-This reaction always occurs at position 1. The conditions and the net charge on N-1 are summarized in the Table. Quaternization starts with the nucleophilic attack on the ring nitrogen, ${ }^{10}$ and nucleophilicity, partly controlling the reactivity, is roughly proportional to the net charge. ${ }^{3}$ Therefore the reactivity of $\mathrm{N}-5$ is much more weaker because its net charge varies only between -0.096 and -0.157 . We could find no reaction conditions under which alkylation occurs at N-5. The results in the Table demonstrate that decreasing the net charge on $\mathrm{N}-1$ involves increasing reaction times.

Reactions of the 3-Ethoxycarbonyl Group.-The 3$\mathrm{EtO}_{2} \mathrm{C}$ group of compounds (2), (3), ${ }^{1}$ (6), ${ }^{1}$ (10a), ${ }^{1}$ and ($10 \mathrm{~b}, \mathrm{c}$) can be hydrolysed. It also reacts with ammonia and hydrazine. These reactions are influenced by the ring structure and it is therefore reasonable to treat them separately. The net charge of the oxo-carbon atom is in all cases quite large ($0 \cdot 496-0 \cdot 518$), and this causes

Scheme 2
the increased reactivity. No parallelism was found here between reactivity and net charge.
Bromination.-Working in apolar solvents with

and ($9 \mathrm{c}, \mathrm{d}$) the outcome of the reaction depends on the net charge on $\mathrm{C}-9 \mathrm{a}$. If this is not less than 0.258 , reaction takes place. In the opposite case the initial products are regained. The only exception is (9e) where the $\mathrm{C}-9 \mathrm{a}$ net charge is lower $(0 \cdot 245)$ but reaction takes place. Compound (8 g) reacts over a longer period $(6 \mathrm{~h})$ with a lower conversion (52%): here the net charge lies just at the limit $(0 \cdot 258)$. No experimental results are available for (8 f) and ($9 \mathrm{a}, \mathrm{b}$) but on the basis of their charges at $C-9 a(0.278,0.292$, and 0.291 , respectively) it is considered that reaction should occur. For details of the reaction with (9 d) and (9 e), see the Experimental section.

Reaction time (h)	Temperature \dagger	Yield $(\%)$	Net charge on N-1
1	A	73	-0.282
1	A	90	-0.282
1	A	78	-0.282
2	A	33	-0.282
1	A	81	-0.275
6	B	88	-0.273
1	B	69	-0.272
12	B	93	-0.272
12	B	75	-0.270

$\dagger \mathrm{A}=$ Reflux, $\mathrm{B}=$ room temperature.
bromine, substitution takes place at position 9 in the case of (3b) and (8e) (see Scheme 2). ${ }^{1}$ This position shows high reactivity which is reflected by CNDO calculations. The hydrogen atoms attached to C-9 are very positive * and therefore easy to remove. Other hydrogen atoms of the molecule have smaller net charges $(-0.013-0.010)$.

THEORETICAL

The charge distribution of the molecules is approximated by the sum of σ and π charges. The former was

[^1]calculated according to Del Re's method ${ }^{11}$ the latter by the Pariser-Parr-Pople procedure. ${ }^{12}$ The calculation on the quaternary ammonium salts was performed on the basis of the σ-core polarization model of Nishimoto and his co-workers. ${ }^{13}$ The details of the calculations as well as the empirical parameters used by us, are given in an earlier work. ${ }^{14}$ CNDO Calculations were performed according to the standard procedure. ${ }^{15}$

EXPERIMENTAL

In this section, only novel reactions are described: the experimental details of other reactions discussed in this work are given in ref. 1 .
I.r. spectra were measured for KBr pellets with a Zeiss UR-20 spectrometer, u.v. spectra were recorded in ethanolic solutions by means of Unicam SP 800 spectrometer, and n.m.r. data were determined with respect to a tetramethylsilane standard with a Perkin-Elmer R 12 spectrometer.
6-Methyl-4-oxopyrido[1,2-a]pyrimidine-3-carboxylic Acid (7f).-The pyridopyrimidinone (2b) (46.2 g) was stirred at room temperature in NaOH solution $(2 \% ; 600 \mathrm{ml})$ for 2 h . The deep orange solution was neutralized with 5% aqueous hydrochloric acid (pH 7). The precipitated ethyl hydrogen (6-methyl-2-pyridyl)aminomethylenemalonate ${ }^{1}$ ($1 \mathrm{~b} ; \mathrm{R}^{1}=$ H) $(6.3 \mathrm{~g}, 12 \%)$ was filtered off. The filtrate was adjusted to pH 2 . The acid (7 f) formed pale yellow crystals (33.5 g , 82%), m.p. $180-182^{\circ}$ (Found: C, 53.4 ; H, 4.7 ; N, 12.7. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $53.9 ; \mathrm{H}, 4 \cdot 5 ; \mathrm{N}, 12 \cdot 6 \%$).

6-Methyl-4-oxopyrido[1,2-a]pyrimidine-3-carboxamide (7e). -The pyridopyrimidinone (2 b) (23 g) was dissolved in a mixture of ethanol (150 ml) and conc. $\mathrm{NH}_{4} \mathrm{OH}$ (450 ml). The solution was left at room temperature, and after $c a .40 \mathrm{~min}$ crystallization occurred. After 24 h the precipitated pale yellow amide (7 e) ($15.5 \mathrm{~g}, 76 \%$) was filtered off, m.p. 259-260 (from dimethylformamide), $\lambda_{\text {max. }} 389$ ($\log \varepsilon 4 \cdot 18$), $374(4 \cdot 15)$, and $255 \mathrm{~nm}(3.98)$ (Found: $\mathrm{C}, 59 \cdot 4$; $\mathrm{H}, \mathbf{4} \cdot \mathbf{3} ; \mathrm{N}, 20 \cdot 9 . \quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 59 \cdot 1 ; \mathrm{H}, 4 \cdot 45$; N, 20.7\%).

4-Oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidine-3-
carboxamide (8 h).-The tetrahydropyridopyrimidinone (3a) $(6.66 \mathrm{~g})$ was dissolved in conc. $\mathrm{NH}_{4} \mathrm{OH}(30 \mathrm{ml})$. After 48 h the precipitated amide (8 h) ($4.7 \mathrm{~g}, 81 \%$) was filtered off, m.p. 250-251 (from methanol) (Found: C, 56.1; $\mathrm{H}, 5.8 ; \mathrm{N}, 21.7 . \quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 56 \cdot 0 ; \mathrm{H}, 5 \cdot 8$; N, 21.7%).

Cyclization of Acrylic Acid Derivatives (General Method).The acrylic acid derivative ($0 \cdot 1 \mathrm{~mol}$) was held at $135-140^{\circ}$ in phosphoryl chloride-polyphosphoric acid (45.6 g and 7 g respectively). After termination of the gas evolution (HCl) the mixture was broken up at $80-100^{\circ}$ with ethanol $(100 \mathrm{ml})$. The mixture was poured into water (150 ml), neutralized with 20% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, and shaken with chloroform. The dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ solution was evaporated and the residue recrystallized.

Ethyl 2-methyl-3-(2-pyridylamino)acrylate gave 3methylpyrido [1,2-a]pyrimidin-4-one (7a) ($13.4 \mathrm{~g}, 90 \%$) after 3 h reaction, as crystals, m.p. $120-122^{\circ}$ (from propan-2-ol) (Found: C, 67.2; H, 5.9; N, 17.3. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$ requires C, $67.5 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 17 \cdot 5 \%)$.

[^2]Ethyl 2-methyl-3-(6-methyl-2-pyridylamino)acrylate gave 3,6-dimethylpyrido $[1,2-\mathrm{a}]$ pyrimidin-4-one (7c) ($15.7 \mathrm{~g}, 87 \%$) after 3 h reaction, as pale yellow crystals, m.p. 73-74 ${ }^{\circ}$ (from ethyl acetate), $v_{\max } 1680,1645,1600$, and $1500 \mathrm{~cm}^{-1}$, $\lambda_{\text {max }} 358(\log \varepsilon 3.98)$ and $247 \mathrm{~nm}(4.04), \delta\left(\mathrm{CDCl}_{3}\right) 2 \cdot 16(3 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{Me}), 3 \cdot 07(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 6 \cdot 65(1 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}), 7 \cdot 3-7 \cdot 5(2 \mathrm{H}$, $\mathrm{m}, 8-$ and $9-\mathrm{H}$), and $8.08(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ (Found: C, $69 \cdot 1$; $\mathrm{H}, 5 \cdot 6 ; \mathrm{N}, 16 \cdot 1 . \quad \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 68.95 ; \mathrm{H}, 5 \cdot 8$; N, 16.1%).
Ethyl 2-phenyl-3-(2-pyridylamino)acrylate gave 3-phenylpyrido $[1,2-a]$ pyrimidin-4-one (7 b) ($15 \cdot 2 \mathrm{~g}, 68 \%$) after 6 h reaction, as pale yellow crystals, m.p. $167-168^{\circ}$ (from ethanol) (lit., ${ }^{16} 166-167^{\circ}$).
Ethyl 2-phenyl-3-(6-methyl-2-pyridylamino)acrylate gave 6-methyl-3-phenylpyrido[1,2-a]pyrimidin-4-one (7d) (19.4 g, 82%) after 6.5 h reaction, as yellow crystals, m.p. 124-125 (from propan-2-ol) (Found: C, $75.9 ; \mathrm{H}, 5 \cdot 8 ;$ N, 11.7 . $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 76 \cdot 25 ; \mathrm{H}, 5 \cdot 5 ; \mathrm{N}, 11 \cdot 9 \%$).
3-Methyl-6, 7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one (8a).-The pyridopyrimidinone (7a) (16.0 g) was hydrogenated at atmospheric pressure in 10% aqueous hydrochloric acid (150 ml) over 10% Pd-C (3 g). After absorption of the theoretical amount of hydrogen the mixture was worked up to give the ketone (8a) ($12.8 \mathrm{~g}, 87 \%$) as crystals, m.p. $70-72^{\circ}$ (Found: C, 65.9; H, 7.3; N, 17.0. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 65 \cdot 8 ; \mathrm{H}, \mathbf{7 . 4} ; \mathrm{N}, \mathbf{1 7} \cdot 1 \%)$.
3,6-Dimethyl-6,7,8,9-tetrahydropyrido $[1,2-\mathrm{a}]$ pyrimidin-4one (8 c).-Analogously to (8 a), the pyridopyrimidinone (7 c) gave (8 c) (75%) as crystals, m.p. $67-68^{\circ}$, b.p. $130-135^{\circ}$ at $0.3 \mathrm{mmHg}, \nu_{\text {max }} 1660 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 278(\log \varepsilon 3.98)$ and 231 nm $(3.93), \delta\left(\mathrm{CDCl}_{3}\right) 1.36(3 \mathrm{H}, \mathrm{d}, 6-\mathrm{Me}), 2.0\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 2 \cdot 05(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 2 \cdot 9\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{2}\right), 5 \cdot 0(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H})$, and $7.75(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ (Found: C, 67.1 ; H, 8.2 ; N, $15 \cdot 9 . \quad \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 67 \cdot 4 ; \mathrm{H}, 7.9 ; \mathrm{N}, 15 \cdot 7 \%$).
3-Phenyl-6,7,8,9-tetrahydropyrido $[1,2$-a $]$ pyrimidin-4-one (8b).-Analogously to (8a), the pyridopyrimidinone (7b) yielded (8 b) (77%) as yellow crystals, m.p. $168-169^{\circ}$ (from propan-2-ol) (Found: C, $74 \cdot 5 ; \mathrm{H}, 6 \cdot 3 ; \mathrm{N}, 12.5 . \quad \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 74 \cdot 3 ; \mathrm{H}, 6 \cdot 2 ; \mathrm{N}, 12 \cdot 4 \%$).
6-Methyl-3-phenyl-6,7,8,9-tetrahydropyrido [1,2-a]pyr-
imidin-4-one (8 d).-Analogously to (8 a), the pyridopyrimidinone (7 d) gave (8 d) (80%) as yellow crystals, m.p. $112-113^{\circ}$ (from propan-2-ol). The same product was obtained when hydrogenation took place under 10 atm pressure, $\nu_{\max } 1675,1610,1540$, and $1485 \mathrm{~cm}^{-1}$, $\lambda_{\text {max }} 302$ $(\log \varepsilon 4 \cdot 00), 245(3.75)$, and $223 \mathrm{~nm}(3 \cdot 72), \delta\left(\mathrm{CDCl}_{3}\right) 1 \cdot 39$ $(3 \mathrm{H}, \mathrm{d}, 6-\mathrm{Me}), 1.9\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 2.9(2 \mathrm{H}, \mathrm{m}$, $\left.9-\mathrm{H}_{2}\right), 5 \cdot 1(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 7 \cdot 3-7 \cdot 85(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{Ph})$, and 8.05 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$) (Found: $74.9 ; \mathrm{H}, 6.5 ; \mathrm{N}, 11.6 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 6.7 ; \mathrm{N}, 11.7 \%$).

1,6-Dimethyl-4-oxo-6,7,8,9-tetrahydro- 4 H -pyrido $[1,2-\mathrm{a}]$ pyrimidinium Methyl Sulphate (9g).-The tetrahydropyridopyrimidinone $(8 \mathrm{~g})(16.4 \mathrm{~g})$ was dissolved in dry benzene (50 ml). Dimethyl sulphate (13.2 g) was added and after 24 h the precipitated (9 g) ($21.3 \mathrm{~g}, 73 \%$) was filtered off, as crystals, m.p. 163-164 (from ethanol), $\nu_{\text {max. }} 1735,1660,1530$, and $1470 \mathrm{~cm}^{-1}, \lambda_{\text {max }} 266(\log \varepsilon 3 \cdot 56)$ and $236 \mathrm{~nm}(3.94), \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1.38(3 \mathrm{H}, \mathrm{d}, 6-\mathrm{Me}), 2 \cdot 1(4 \mathrm{H}, \mathrm{m}$, $7-\mathrm{H}_{2}$ and $\left.8-\mathrm{H}_{2}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSO}_{4}\right), 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$, $5.0(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{d}, 3-\mathrm{H}), 8.04(1 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}), 9-\mathrm{H}_{2}$

[^3]exchangeable (Found: C, 45.3; H, 6.3; N, 9.7; S, 11.2 . $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 45.5 ; \mathrm{H}, 6.3$; $\mathrm{N}, 9.7 ; \mathrm{S}, 11 \cdot 1 \%$).

1,3,6-Trimethyl-4-oxo-6, 7,8,9-tetrahydro- 4 H -pyrido $[1,2-\mathrm{a}]$ pyrimidinium Methyl Sulphate (9f).-The tetrahydropyridopyrimidinone (8c) (17.8 g) was dissolved in acetone $(50 \mathrm{ml})$, and dimethyl sulphate $(12 \cdot 6 \mathrm{~g})$ added. After 24 h the precipitated (9 f) ($28.4 \mathrm{~g}, 93 \%$) was filtered off as crystals, m.p. 170-171 (from propan-2-ol) (Found: C, 47.1; H, 6.7; N, $9.2 ; \mathrm{S}, 10 \cdot 9 . \quad \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires C , $47 \cdot 4 ; \mathrm{H}, 6.7$; N, 9.2 ; S, 10.5%).

1,6-Dimethyl-4-oxo-3-phenyl-6,7,8,9-tetrahydro-4H-pyrido-[1,2-a]pyrimidinium Methyl Sulphate (9e).-Analogously to (9f) the tetrahydropyridopyrimidinone (8d) gave (9e) (85%) as crystals, m.p. 182-183 (from propan-2-ol), $\lambda_{\text {max. }} 295$ ($\log \varepsilon 3.82$) and 200 nm (4.04) (Found: C, 55.7 ; H, 6.1; $\mathrm{N}, 7 \cdot 6 ; \mathrm{S}, 8.8 . \quad \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 55 \cdot 6 ; \mathrm{H}, 6.3 ; \mathrm{N}$, 7.7 ; S, 8.9%).

3-Carbamoyl-1,6-dimethyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido[1,2-a]pyrimidinium Methyl Sulphate (9d).-The tetrahydropyridopyrimidinone (8 e) $(20.7 \mathrm{~g})$ was suspended with dimethyl sulphate ($13 \cdot 2 \mathrm{~g}$) in benzene (150 ml), refluxed for 6 h , and cooled. The amide (9 d) ($27 \mathrm{~g}, 81 \%$) gave yellow crystals, m.p. 175 - 176° (from methanol), $\nu_{\text {max. }} 3415,3200,1720,1650,1595,1520$, and $1470 \mathrm{~cm}^{-1}$, $\lambda_{\text {max }} 354(\log \varepsilon 3 \cdot 12)$ and $257 \mathrm{~nm}(4 \cdot 08), \delta\left(\mathrm{D}_{2} \mathrm{O}\right) 1 \cdot 43(3 \mathrm{H}, \mathrm{d}$, $6-\mathrm{Me}), 2 \cdot 1\left(4 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}\right.$ and $\left.8-\mathrm{H}_{2}\right), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeSO}_{4}\right)$, $3.98(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 5 \cdot 1(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, and $8.82(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, $9-\mathrm{H}_{2}$ and $-\mathrm{CONH}_{2}$ exchangeable (Found: C, $43 \cdot 3$; H, $5 \cdot 7$; $\mathrm{N}, 12 \cdot 6 ; \mathrm{S}, 9 \cdot 6 . \quad \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 43 \cdot 6 ; \mathrm{H}, 5 \cdot 5$; N, $12 \cdot 5 ;$ S, 9.5%).

3-Carboxy-1,6-dimethyl-4-oxo-6,7,8,9-tetrahydro-4H-pyrido-[1,2-a]pyrimidinium Methyl Sulphate (9h).-The tetrahydropyridopyrimidinone (8f) (20.8 g) was dissolved in chloroform-acetone (100 ml and 25 ml respectively), dimethyl sulphate $(26.4 \mathrm{~g})$ was added, and the mixture was heated under reflux for 1 h . After 24 h the precipitated acid (9 h) ($20 \mathrm{~g}, 60 \%$) was filtered off to give crystals, m.p. 177° (from ethanol), $\nu_{\max .} 1745,1715,1665,1525$, and $1480 \mathrm{~cm}^{-1}, \lambda_{\text {max }} 366$ ($\log \varepsilon 3 \cdot 10$) and 258 nm (4.22) (Found: C, $43 \cdot 4 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 8 \cdot 4 ; \mathrm{S}, 9.7 . \quad \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$ requires C , $43 \cdot 1 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 8.4 ; \mathrm{S}, 9 \cdot 6{ }^{\circ}{ }^{\mathrm{o}}$).

1,6-Dimethyl-4-oxo-4,6,7,8,9,9a-hexahydro-1 H -pyrido $[1,2-$ a]pyrimidine-3-carboxamide (10 e). -The quaternary pyridopyrimidinone (9 d) (33.3 g) was dissolved in water (350 ml), and a solution of $\mathrm{NaBH}_{4}(4 \cdot 1 \mathrm{~g})$ in water (30 ml) added within 30 min while the reaction mixture was heated to $35-38^{\circ}$. The mixture was stirred for 1.5 h , adjusted with $1: 1$ hydrochloric acid to pH 3 , neutralized with 5% aqueous NaHCO_{3} solution, purified with charcoal, filtered, and extracted with chloroform. The dried extract was evaporated to give the amide (10 e) (15.6 g), 70%), as crystals, m.p. 186° (from ethanol-ethyl acetate, $3: 1$), $\nu_{\text {max }} 3350,3180,1670,1615,1570,1560$, and $1465 \mathrm{~cm}^{-1}$, $\lambda_{\max } 319(\log \varepsilon 3 \cdot 83)$ and $235 \mathrm{~nm}(4.31), \delta\left(\mathrm{CDCl}_{3}\right) 1 \cdot 22(3 \mathrm{H}$, d, $6-\mathrm{Me}), 1 \cdot 8\left(6 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}\right.$, and $\left.9-\mathrm{H}_{2}\right), 3 \cdot 10(3 \mathrm{H}, \mathrm{s}$, NMe), $4 \cdot 7-5 \cdot 3(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $9 \mathrm{a}-\mathrm{H}), 5 \cdot 7 \mathrm{br}(1 \mathrm{H}, \mathrm{NH})$, $7.90(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, and $8.8 \mathrm{br}(1 \mathrm{H}, \mathrm{NH})$ (Found: C, 59.3 ; $\mathrm{H}, 7.7 ; \mathrm{N}, 19.0 . \quad \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 59.2 ; \mathrm{H}, 7.7$; N, 18.8%).

1,6-Dimethyl-3-phenyl-1,6,7,8,9,9a-hexahydropyrido[1,2-a]-
pyrimidin-4-one (10d).—Analogously to (11e) the quaternary pyridopyrimidinone (9d) yields (10 d) $(80 \%$) as crystals, m.p. $114-115^{\circ}$ (from ethanol), $\nu_{\max } 1636,1618,1602$, and $1490 \mathrm{~cm}^{-1}, \lambda_{\text {max }} 334(\log \varepsilon 3 \cdot 76), 263$ (4.08), and 223 nm (3.98) (Found: C, $74.8 ; \mathrm{H}, 7.8 ; \mathrm{N}, 10.8 . \mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 7.9 ; \mathrm{N}, 11.0 \%$).

Ethyl 6-Methyl-4-oxo-1-n-propyl-4,6,7,8,9,9a-hexahydro1 H -pyrido 1,2 -a pyrimidine-3-carboxylate (10 b). -The hexahydropyridopyrimidinone (4b) (24.0 g) was heated under reflux with n-propyl bromide (50 g) and $\mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{~g})$ in ethanol (250 ml) for 12 h . The mixture was filtered and the filtrate evaporated and its residue dissolved in ethanol (50 ml). This solution was treated with charcoal, filtered, and 70% aqueous perchloric acid (10 ml) was added. After standing 24 h in a refrigerator, the precipitated 3-ethoxycarbonyl-6-methyl-4-oxo-1-n-propyl-4,6,7,8,9,9a-hexa-hydro- 1 H -pyrido $[1,2$-a $]$ pyrimidinium perchlorate $(28.5 \mathrm{~g}$, 70%) was filtered off as crystals (the base is a pale yellow oil), m.p. 110-111 (from ethanol) (Found: C, $47.6 ; \mathrm{H}$, $6.6 ; \mathrm{Cl}, 9 \cdot 1 ; \mathrm{N}, 7 \cdot 3 . \quad \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}, \mathrm{HClO}_{4}$ requires $\mathrm{C}, 47 \cdot 7$; $\mathrm{H}, 6.6 ; \mathrm{Cl}, 9.3 ; \mathrm{N}, 7.4 \%)$.
Hydroly'sis of (10b).-The pyridopyrimidinone (10b) $(14.0 \mathrm{~g})$ dissolved in 5% aqueous $\mathrm{NaOH}(120 \mathrm{ml})$ was stirred at $50-60^{\circ}$ for 8 h and then extracted with benzene. The aqueous solution was acidified with 1:1 hydrochloric acid to pH 8 , purified with charcoal, filtered, and acidified (pH 3). The precipitated 6-methyl-4-oxo-1-n-propyl-4,6,7,8,9,9a-hexahydro-1H-pyrido $[1,2-\mathrm{a}]$ pyrimidine3 -carboxylic acid (10 f) ($9 \cdot 3 \mathrm{~g}, 74 \%$) was filtered off as crystals, m.p. $158-159^{\circ}$ (from ethanol), $\nu_{\text {max. }}$ 1730, 1622, 1576, 1520, and $1450 \mathrm{~cm}^{-1}, \lambda_{\text {max. }} 320(\log \varepsilon 3 \cdot 81)$ and 241 nm (4.04), $\delta\left(\mathrm{CDCl}_{3}\right) 1 \cdot 00\left(3 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1 \cdot 28(3 \mathrm{H}, \mathrm{d}$, (6-Me), $1 \cdot 5-2 \cdot 0\left(8 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}\right.$, and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.35\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5 \cdot 0(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $9 \mathrm{a}-\mathrm{H})$, $7.94(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$, and $13.75\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{H}\right)$ (Found: C, $61.8 ; \mathrm{H}, 8.0 ; \mathrm{N}, 10.9 . \quad \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 62.0 ; \mathrm{H}$, $8.0 ; \mathrm{H}, 11 \cdot 0 \%$).
Ethyl 1-n-Butyl-6-methyl-4-oxo-4,6,7,8,9,9a-hexahydro-1H-pyrido[1,2-a]pyrimidine-3-carboxylate (10c).-Similarly to (11b) the hexahydropyridopyrimidinone (4b) yielded with n-butyl bromide 1-n-butyl-3-ethoxycarbonyl-6-methyl-4-oxo-4,6,7,8,9,9a-hexahydro-1H-pyrido[1,2-a]pyridinium perchlorate (76%) as crystals (the base is a pale yellow oil), m.p. 135-137 (from ethanol) (Found: C, 48.8; H, 6.8; $\mathrm{Cl}, 9 \cdot 1 ; \mathrm{N}, 7 \cdot 2 . \quad \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{HClO}_{4}$ requires $\mathrm{C}, 48.7 ; \mathrm{H}$, 6.8 ; Cl, $9 \cdot 0$; N, $7 \cdot 1 \%$).

Hydrolysis of (10 c).-Working as above, the butylhexahydropyridopyrimidinone (10c) yielded $1-n$-butyl-6-methyl-4-oxo-4,6,7,8,9,9a-hexahydro-1H-pyrido[1,2-a]pyrimidine-3carboxylic acid $(10 \mathrm{~g})(53 \%)$, as crystals, m.p. 112-113 ${ }^{\circ}$ (from ethanol) (Found: C, 62.8; H, 8.3; N, 9.3. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 63 \cdot 0 ; \mathrm{H}, 8 \cdot 3 ; \mathrm{N}, 9.3 \%$).

We thank Mrs. M. Pongor-Csákvári for the u.v. and i.r. spectral data, Mr. P. Dvortsák for the n.m.r. data, and 1)r. P. Pulay for performing the CNDO calculations. G. N.-Sz. was a guest at the Research Group for Quantum Theory of the Technical University, Budapest, when this work was done.
[3/2611 Received, 28th December, 1973]

[^0]: ${ }^{1}$ Z. Mészáros, J. Knoll, P. Szentmiklósi, A. Dávid, G. Hor-

[^1]: * The net charges are 0.022 and 0.029 electrons, respectively.

[^2]: ${ }^{11}$ G. Del Re, J. Chem. Soc., 1958, 4031.
 12 R. Pariser and R. G. Parr, J. Chem. Phys., 1953, 21, 466, 767.
 ${ }^{13}$ K. Nishimoto, K. Nakatsukasa, R. Fujishiro, and S. Kato, Theor. Chim. Acta, 1969, 15, 244.

[^3]: ${ }^{14}$ G. Náray-Szabó, E. Dudar, and G. Horváth, Acta Chim. Acad. Sci. Hung., 1972, 74, 281.
 15 J. A. Pople and D. L. Beveridge, 'Approximate Molecular Orbital Theory.' McGraw-Hill, New York, 1970.

 16 A. Halleux and H. G. Viehe, J. Chem. Soc. (C), 1970, 881.

